Antiretroviral chemoprophylaxis before exposure is a promising approach for the prevention of human immunodeficiency virus (HIV) acquisition.

We randomly assigned 2499 HIV-seronegative men or transgender women who have sex with men to receive a combination of two oral antiretroviral drugs, emtricitabine and tenofovir disoproxil fumarate (FTC–TDF), or placebo once daily. All subjects received HIV testing, risk-reduction counseling, condoms, and management of sexually transmitted infections.

The study subjects were followed for 3324 person-years (median, 1.2 years; maximum, 2.8 years). Of these subjects, 10 were found to have been infected with HIV at enrollment, and 100 became infected during follow-up (36 in the FTC–TDF group and 64 in the placebo group), indicating a 44% reduction in the incidence of HIV (95% confidence interval, 15 to 63; P=0.005). In the FTC–TDF group, the study drug was detected in 22 of 43 of seronegative subjects (51%) and in 3 of 34 HIV-infected subjects (9%) (P<0.001). Nausea was reported more frequently during the first 4 weeks in the FTC–TDF group than in the placebo group (P<0.001). The two groups had similar rates of serious adverse events (P=0.57).

Oral FTC–TDF provided protection against the acquisition of HIV infection among the subjects. Detectable blood levels strongly correlated with the prophylactic effect. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; ClinicalTrials.gov number, NCT00458393.)
We selected emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) combination therapy in a single tablet (FTC–TDF) for evaluation of preexposure prophylaxis because of several favorable characteristics. Details are provided in the introduction in Supplementary Appendix, available with the full text of this article at NEJM.org.) The protective activity of FTC and TDF has been shown in mice transplanted with human immune cells and in nonhuman primates. In these studies, there were increased levels of efficacy when both agents were used together, as compared with the use of either agent alone. The administration of the drug both before and after exposure was important for maximizing the protective benefit.

Daily preexposure prophylaxis with oral TDF had an acceptable side-effect profile in a trial involving West African women. A tenofovir 1% vaginal gel reduced HIV infection rates by 39% among women. Men and transgender women who have sex with men are disproportionately affected by the global epidemic. Surveys of such persons in the United States indicate that the current use of preexposure prophylaxis is rare, although the majority would consider such use if evidence of safety and efficacy became available.

In this multinational study, called the Preexposure Prophylaxis Initiative (iPrEx) trial, we aimed to evaluate the safety and efficacy of once-daily oral FTC–TDF as compared with placebo for the prevention of HIV acquisition among men and transgender women who have sex with men.

We developed the concept and protocol for this study using methods that came to be approved as "good participatory practices" by UNAIDS. The development of the protocol was sponsored by the National Institute of Health's Division of Acquired Immunodeficiency Syndrome (DAIDS). The protocol was approved by national government public health authorities in Peru, Ecuador, South Africa, Brazil, Thailand, and the United States and by the ethics committee at each site. All subjects provided written informed consent. The study coordinator vouches for the fidelity of the report to the protocol. The study protocol is available at NEJM.org, and a detailed description of the methods is provided in the Supplementary Appendix.

Inclusion criteria were male sex at birth, an age of 18 years or older, HIV-seronegative status, and evidence of high risk for acquisition of HIV infection. Subject codes were randomly assigned in blocks of 10, stratified according to site. The subject codes were assigned consecutively at the study sites to eligible subjects at the time of the first dispensation of a study drug. Serologic testing for hepatitis B was performed at screening.

Study visits were scheduled every 4 weeks after enrollment. Each 4-week visit included drug dispensation, pill count, adherence counseling, rapid testing for HIV antibodies, and taking of a medical history. Chemical and hematologic analyses were performed at weeks 4, 8, 12, 16, and 24 and every 12 weeks thereafter. During screening, a computer-assisted structured interview collected information about education level, self-identified sex, and alcohol use, along with subjects' perceived study-group assignment at week 12. High-risk behavior was assessed by interview every 12 weeks, and physical examinations and evaluations for sexually transmitted infections were performed at least every 24 weeks. Visits through May 1, 2010, are included in this report of the primary analysis of safety and efficacy. The visit cutoff date was set by the study sponsor without any access to interim findings and was intended to ensure observation of the targeted number of seroconversion events (85). The use of study drugs was intensively monitored and promoted (for details, see Methods in the Supplementary Appendix).

At every scheduled visit, subjects received a comprehensive package of prevention services, including HIV testing, risk-reduction counseling, condoms, and diagnosis and treatment of symptomatic sexually transmitted infections, including gonorrhea and chlamydia urethritis, syphilis, and herpes simplex virus type 2 (HSV-2). In addition, at 24-week intervals, subjects were screened for asymptomatic urethritis, syphilis, antibodies to HSV-2, and genital warts and ulcers; treatment was provided when indicated. Sexual partners were offered treatment of sexually transmitted infections that were diagnosed in the subject. Subjects were linked to local prevention and treatment services when required to receive standard-of-care services. All subjects were instructed to protect themselves from HIV with conventional methods, since they were unaware of their study-group assignment. Subjects who reported a recent unprotected exposure to an HIV-infected partner were referred for postexposure prophylaxis (at sites where such therapy was available), and the administration of a study drug was temporarily suspended. Vaccination against hepatitis B virus (HBV) was offered to all susceptible subjects.

Testing for HIV antibody was performed on whole blood with the use of two different rapid tests at every scheduled visit, and reactive rapid tests were tested with the use of Western blot analysis of serum (Figure S1 in the Supplementary Appendix). Subjects with failed rapid tests were retested during the visit. HIV plasma RNA testing with the use of an assay with a lower limit of quantitation of 40 copies per milliliter was performed if seroconversion was detected within 12 weeks after enrollment. RNA testing was also used to identify the first date of laboratory evidence of infection for the as-treated analysis. Testing for drug-resistance genotyping and phenotyping was performed with the use of clinically validated assays on the basis of the viral load at the seroconversion visit.
A prespecified subgroup analysis was performed to investigate whether drug levels correlated with protective effect. Subjects with HIV infection were matched with two control subjects, one from each study group who were selected from among seronegative subjects, according to study site (Figure S5 in the Supplementary Appendix). Plasma was tested for the presence of FTC and tenofovir (TFV), and peripheral-blood mononuclear cells were tested for FTC triphosphate (FTC-TP) and TFV diphosphate (TFV-DP), which are the active intracellular metabolites of FTC and TFV, respectively, with the use of validated liquid chromatography and tandem mass spectrometry assays.

The study was designed by four of the investigators in collaboration with all the site investigators and communities. DAIDS reviewers approved the protocol, which was developed by the study investigators, and monitored the conduct of the trial at study sites. The Bill and Melinda Gates Foundation also provided funding but did not have a role in protocol development or site monitoring. Gilead Sciences donated both FTC–TDF and placebo tablets and provided travel-related support for meetings conducted by non-Gilead investigators. The role of Gilead Sciences in the development of the protocol was limited to sections regarding the handling of the study drugs. Neither Gilead Sciences nor any of its employees had a role in the accrual or analysis of the data or in the preparation of the manuscript. DAIDS agreed to give Gilead 30 days to comment on the manuscript, but there was no agreement to accept suggestions. The first author wrote the first draft of the manuscript (except for the drug-level sections, which were drafted by another investigator) and decided to submit the manuscript for publication. The protocol statistician and data manager vouch for the accuracy of the data, and the protocol chair and site investigators vouch for the completeness of the reported data.

Data were collected on case-report forms and faxed to a DataFax server at DF/Net Research. It was determined that the observation of 85 incident HIV infections would yield a power of at least 80% with a one-sided alpha level of 0.05 to reject a null hypothesis of efficacy of 30% or less if the true efficacy were 60% or more. The modified intention-to-treat analysis included available data for all subjects except those with HIV RNA detected in their enrollment sample. The as-treated analysis used a time-dependent covariate indication as to whether the subject was known to fall below the prespecified level of study-drug compliance (50%) on any of the following: records of study-drug dispensation alone, pill-use calculation on the basis of study-drug dispensation and returns, and subjects’ self-report. For the as-treated analysis, pills from unreturned bottles were assumed to have been taken, and late visits were included in the analysis if the last dispensation allowed pill use on 50% or more of days. Safety analyses included all subjects.

Of 4905 subjects who were screened, 2499 were enrolled in the study from July 10, 2007, through December 17, 2009, at 11 sites in six countries (Figure 1). The baseline characteristics of the two study groups were similar (Table 1). All subjects were born male, although 29 (1%) reported their current gender identity as female. The ages of the subjects ranged from 18 to 67 years; the FTC–TDF group was on average 9 months older than the placebo group (mean age, 27.5 vs. 26.8 years; P=0.04).

Among HBV-susceptible subjects at screening, 94% accepted HBV vaccination. We enrolled 13 subjects with chronic HBV infection that was detected at screening, and acute HBV infection was reported as an adverse event in 3 additional subjects (2 in the FTC–TDF group and 1 in the placebo group) after enrollment when elevated liver aminotransferase levels were observed. All the HBV infections resolved with detectable levels of immunity.

The cohort was followed for 3324 person-years with a variable duration of observation (median, 1.2 years; maximum, 2.8 years) (Figure 1). There were no significant trends in visit completion rates over time. Most subjects said they did not know their study-group assignment at week 12, and those who guessed their assignment were evenly distributed between the two groups (Table S3 in the Supplementary Appendix). No subjects were told their study-group assignment during the course of the trial. A study drug was temporarily discontinued in 21 subjects (8 in the FTC–TDF group and 13 in the placebo group) so that they could receive postexposure prophylaxis for HIV (P=0.28).

The rate of self-reported pill use was lower in the FTC–TDF group than in the placebo group at week 4 (mean, 89% vs. 92%; P=0.001) and at week 8 (mean, 93% vs. 94%; P=0.006) but was similar thereafter (mean, 95% in the two groups). At each visit, a portion of subjects (approximately 6%) did not report the number of pills missed. The percentage of pill bottles returned was 66% by 30 days and 86% by 60 days. The rate of pill use that was estimated according to pill count also increased during the first 8 weeks and then remained stable at a median ranging from 89 to 95%, depending on whether pills from unreturned bottles were counted as having been taken or not taken. On the basis of pill-dispensation dates and quantities, the rate of pill use decreased during the first year, from 99% to 91%, a trend that contrasted with pill counts and self-report, which indicated an increased rate of use.
Sexual practices were similar in the two groups at all time points (P=0.97) (Figure S2 in the Supplementary Appendix). The total numbers of sexual partners with whom the respondent had receptive anal intercourse decreased, and the percentage of those partners who used a condom increased after subjects enrolled in the study. There were no significant between-group differences in the numbers of subjects with syphilis (P=0.49), gonorrhea (P=0.74), chlamydia (P=0.43), genital warts (P=0.53), or genital ulcers (P=0.62) during follow-up (Table S4 in the Supplementary Appendix).

In testing for elevations in serum creatinine levels, there were 41 instances of elevations that were at least 1.1 times the upper limit of the normal range or more than 1.5 times the baseline level. Of these elevations, 26 (2%) were in the FTC–TDF group and 15 (1%) were in the placebo group (P=0.08). Two of these elevations increased in grade, accounting for a total of 43 creatinine adverse events (Table 2, and Table S9 in the Supplementary Appendix). Overall, 18 creatinine elevations (44%) remained in the normal range, and 36 (88%) were not confirmed on the next test. A total of 10 elevations led to discontinuation of a study drug (7 in the FTC–TDF group and 3 in the placebo group); study drugs were restarted in 9 subjects. Serum creatinine levels were elevated at more than one consecutive test in 5 subjects in the FTC–TDF group (<1%) and in none of the subjects in the placebo group. All elevations in the serum creatinine level resolved after the discontinuation of a study drug, within 4 weeks in 3 subjects, within 12 weeks in 1 subject, and within 20 weeks in 1 subject. Four of the subjects resumed taking FTC–TDF without recurrence of the elevation.

Moderate nausea (grade 2 and above) was reported more frequently in the FTC–TDF group than in the placebo group (22 vs. 10 events, P=0.04), as was unintentional weight loss of 5% or more (34 vs. 19 events, P=0.04) (for details, see Table S10 in the Supplementary Appendix).

HIV rapid testing was performed at 39,613 visits, during which there were false reactive tests for 3 subjects at 7 visits; each subject had multiple negative tests afterward. HIV seroconversion was observed in 110 persons, of whom 10 had plasma HIV RNA subsequently detected in specimens obtained at the enrollment visit. A finding of fewer than 40 copies per milliliter of plasma HIV RNA was documented for the other 100 HIV-infected subjects before seroconversion. Among the 100 subjects with emergent HIV infection, 36 occurred in the FTC–TDF group, and 64 occurred in the placebo group, representing a relative reduction of 44% in incidence in the modified intention-to-treat population (95% confidence interval [CI], 15 to 63; P=0.005) (Figure 2). After adjustment for the difference in age between the two groups, the efficacy was 43% (95% CI, 14 to 62). The rate of pill use on 50% or more of days was recorded on the basis of pill counts, self-report, and dispensation records at 81% of visits on which efficacy was 50% (95% CI, 18 to 70; P=0.006). This rate did not differ significantly (P=0.48) from the efficacy at visits with less than 50% pill use of 32% (95% CI, -41 to 67%) (Figure 3). Efficacy of less than 30% could not be ruled out in the modified intention-to-treat analysis (P=0.15) or in the prespecified as-treated analysis at 50% pill use (P=0.09). There was no evidence of a change in HIV efficacy with longer follow-up (P=0.44).

In prespecified analyses of efficacy according to subgroup, efficacy was higher among subjects who reported at screening that they had previously had unprotected receptive anal intercourse than among those who did not (efficacy, 58%; 95% CI, 32 to 74) (Figure 3). There was no significant between-group difference in protection on the basis of region, race or ethnic group, male circumcision, level of education, alcohol use, or age. In post hoc analyses, pill use on 90% or more of days was recorded at 49% of visits on which efficacy was 73% (95% CI, 41 to 88; P<0.001). Among all subjects, without exclusion for HIV infection at enrollment or the degree of compliance to the drug regimen, the efficacy was 47% (95% CI, 22 to 64; P=0.001).

Among the 10 subjects in whom plasma HIV RNA was subsequently detected in specimens obtained at enrollment, 5 had symptoms of an acute viral syndrome at enrollment, 2 had symptoms 1 week later (prompting an interim study visit), 1 had an anal sore, and 2 had leukopenia at enrollment. In these subjects, the clinicians did not suspect acute HIV infection, because the symptoms were attributed to an upper respiratory tract infection, sinusitis, or other non-HIV cause.

Of the preexisting HIV infections at enrollment, two occurred in the FTC–TDF group and eight in the placebo group (P=0.06). Among subjects who were infected after enrollment, the numbers with detectable plasma HIV RNA before seroconversion were 5 of 36 (14%) in the FTC–TDF group and 7 of 64 (11%) in the placebo group (P=0.75). The time to seroconversion after RNA detection was similar in the two groups (P=0.55). After the discontinuation of a study drug, seroconversion rates were similar among 320 subjects (161 in the FTC–TDF group and 159 in the placebo group) (P=0.42). These subjects had a total of 1173 visits for HIV testing after the discontinuation of a study drug (642 in the FTC–TDF group and 531 in the placebo group). During
Among subjects who became infected with HIV, the median time between the tested specimen date and the last uninfected visit was 35 days (interquartile range, 28 to 56). No drug was detected in any plasma or cell specimens from subjects in the placebo group. Among subjects in the FTC–TDF group, at least one of the study-drug components was detected in 3 of 34 subjects with HIV infection (9%) and in 22 of 43 seronegative control subjects (51%) (Figure 4). Of the 3 HIV-infected subjects with a detectable level of a study drug, none had cell-associated drug levels higher than the median for the 22 seronegative control subjects in whom a study-drug component was detected. Only 8% of subjects with HIV infection and 54% of control subjects who were considered “on treatment” on more than 50% of days had a detectable level of a study drug in plasma or peripheral-blood mononuclear cells (Table S8 in the Supplementary Appendix). Detection of the different drug components was more than 95% concordant (Table S6 in the Supplementary Appendix).

In the FTC–TDF group, among subjects with a detectable study-drug level, as compared with those without a detectable level, the odds of HIV infection were lower by a factor of 12.9 (95% CI, 1.7 to 99.3; P<0.001), corresponding to a relative reduction in HIV risk of 92% (95% CI, 40 to 99; P<0.001). After adjustment for reported unprotected receptive anal intercourse, the relative risk reduction was 95% (95% CI, 70 to 99; P<0.001).

Plasma HIV RNA levels and CD4+ T-cell counts were similar among subjects with seroconversion in the two groups (Figure S4 in the Supplementary Appendix). Among the 10 subjects who were infected at enrollment, 3 had FTC-resistant infections (2 of 2 in the FTC–TDF group and 1 of 8 in the placebo group) (Table S5 in the Supplementary Appendix). No TDF-resistant infections were observed. Among 36 subjects in the FTC–TDF group and 64 subjects in the placebo group who became infected with HIV during the trial, no FTC or TDF resistance was detected.

Once-daily oral FTC–TDF provided 44% additional protection from HIV among men or transgender women who have sex with men who also received a comprehensive package of prevention services. The protective effect of FTC–TDF was significant but not as high as originally hypothesized during the design of the study. Although reported pill use was high, drug exposure that was measured objectively was substantially lower. The intracellular assay that was used in this study is expected to detect TFV-DP for 14 days or more after the last dose of TDF is taken (see Methods in the Supplementary Appendix). Other evidence of low drug exposure included the lack of drug resistance observed among emergent infections and the absence of suppression of the HIV RNA level in plasma at the seroconversion visit. There was no evidence of delayed seroconversion among subjects who were infected in the FTC–TDF group. More information will be available after the entire cohort stops receiving the study drug.

The estimate of biologic activity of FTC–TDF persists after adjustment for high-risk sexual practice, suggesting that the correlation between drug detection and protection is primarily due to the drug and not to other characteristics of subjects that may link poor adherence with higher risk. The testing of a larger number of specimens, from more subjects at more times, is needed to better define the minimum protective drug concentration. Protective drug levels may differ according to the type of exposure (rectal vs. penile). Drug level may have a role in monitoring trials, programs, and individual users. Methods for inexpensively measuring long-term drug exposure, such as that afforded by analysis of hair, would be helpful once such a method is fully validated.

Side effects may have contributed to low pill use among some subjects. As with treatment of HIV infection and the use of FTC–TDF in postexposure prophylaxis,20 the initiation of FTC–TDF preexposure prophylaxis was associated with self-limited start-up symptoms in a few subjects. The trial design involving a placebo may also have contributed to lower-than-expected pill use. All subjects were counseled that the study pill might be a placebo or an active drug having no proven benefit. Open-label research and program development could provide users with clearer information about expected benefits and risks, which might increase the use and efficacy of preexposure prophylaxis. Engagement with communities and additional behavioral research are needed to develop methods of counseling that better support such use.

The initiation of chemoprophylaxis either before or after exposure should be deferred in patients with signs or symptoms of a viral syndrome, which are often present during acute HIV infection.21,22 The initiation of postexposure prophylaxis in patients who are RNA-positive but antibody-negative has been linked with acquisition of resistance to FTC and lamivudine (3TC), as occurred in subjects in the FTC–TDF group who were already infected at enrollment in our trial. Ways to increase recognition of acute HIV infection would include routine measurement of body temperature and testing for HIV antibodies to evaluate viral syndromes, regardless of whether the presentation suggests HIV infection or another cause. Testing for HIV RNA at the time of
the initiation of preexposure prophylaxis should be considered where available.

TDF treatment is known to cause decreases in renal function, and there were trends toward more creatinine elevations in the FTC–TDF group than in the placebo group. Most creatinine elevations were self-limited and were not confirmed on repeat testing of a new specimen, as might occur due to dehydration, creatine use, or exercise. The ability to detect safety outcomes, including drug resistance, may have been decreased by lower-than-expected drug exposure. In light of evidence of the efficacy of FTC–TDF, more information is needed about possible subclinical effects that may affect bone mineral density, low-level drug resistance, and proximal renal tubular function. Flares of hepatitis caused by HBV after stopping preexposure prophylaxis with TDF were not seen in West African women, but more information is needed. These issues are being investigated in existing trials of preexposure prophylaxis.

Reported high-risk behavior decreased substantially after enrollment and remained lower than at baseline during the trial. Safer behavior was also observed in a trial of preexposure prophylaxis with TDF in West African women and may reflect the services (e.g., counseling, testing, and dispensing of condoms) that are provided as part of such interventions. In addition, taking a pill a day may have served as a daily reminder of imminent risk and may have promoted planning for sex, which has been associated with lower HIV risk. Behavioral changes during future open-label use of preexposure prophylaxis may differ because of an increased expectation of benefits, although such “risk compensation” was not observed during an open-label study of postexposure prophylaxis, during which benefits were expected.

The optimal regimen for preexposure prophylaxis has not been established, and data from the subjects in our study cannot be applied to other populations. Alternative regimens in different populations are being studied. (Details are available in the Discussion in the Supplementary Appendix and at www.avac.org.)

In our study, preexposure prophylaxis with oral FTC–TDF among men and transgender women who have sex with men addressed an important unmet need in public health. HIV prevalence is higher in this population than in other groups in almost all countries. In the United States, rates of HIV infection among such men and transgender women have climbed since the early 1990s, affecting in particular black and Hispanic subpopulations. Intensive counseling in behavioral risk reduction for such subjects has not been shown to be better than standard counseling. Although male circumcision partially protects heterosexual men, penile circumcision is not expected to protect those who are exposed on the rectal mucosa. Heterosexual women were partially protected by tenofovir 1% vaginal gel, but the safety and utility of tenofovir topical gels for rectal use is not yet known. In the FTC–TDF group, there was increased efficacy among subjects who reported having unprotected receptive anal intercourse, which is the main mode of HIV transmission among the subjects in our study and increases the risk of heterosexual women who engage in the practice. We showed that such subjects with a high risk of exposure to HIV can be mobilized to participate in prevention initiatives and that preexposure prophylaxis is effective for slowing the spread of HIV in this population.

Supported by the Division of Acquired Immunodeficiency Syndrome (DAIDS), National Institute of Allergy and Infectious Diseases, National Institutes of Health, as a cooperative agreement (UO1 AI064002, to Dr. Grant) and by the Bill and Melinda Gates Foundation. Study drugs were donated by Gilead Sciences. The pharmacological studies were sponsored by a cooperative agreement with DAIDS (UO1 AI84735, to Dr. Anderson). Support for some specimen handling came from a grant from DAIDS (RO1 AI062333, to Dr. Grant) and by the J. David Gladstone Institutes. Some infrastructure support at the University of California at San Francisco was provided by a grant from the National Institutes of Health (UL1 RR024131).

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

This article (10.1056/NEJMoa1011205) was published on November 23, 2010, and updated on December 1, 2010, at NEJM.org.

Dr. Grant reports receiving support as an advisor to Siemens (the manufacturer of TruGene HIV-1 Genotyping Kit); Dr. Mayer reports receiving grant support from Gilead, Merck, and Bristol-Myers Squibb; Dr. Kalås reports serving on a data and safety monitoring board for Merck; Dr. Schechter reports receiving consulting fees and grants from Gilead; Drs. Liu and Anderson report receiving donations of study drug from Gilead for various PrEP projects; and Drs. Jaffe and Rooney report being employees of Gilead Sciences and owning stock in the company. No other potential conflict of interest relevant to this article was reported.

We thank the study subjects for their dedication to finding new ways to protect communities and for their trust in us; the community advisory boards; the members of the DAIDS multinational independent data and safety monitoring board, Kathy Edwards (chair), Shrikant I. Bangdiwala, KyungMann Kim, W.D. Francois Venter, Alejandro Llanos-Cuentas, Olavo Henrique Munhoz Leite, V.I. Mathan, Carlos Seas, Panpit Suwangool, Wafaa El-Sadr, Gary Maartens, Gabriel Thimonthe, Michael Proschan, and Dennis Dixon; community advocates Mitchell Warren, Julie Davids, Susana Chavez, Jorge (Tito) Bracamonte, and Carlos Caceres; Caitlin Fernandez, Joseph Rower, and Brandon Klein for their analytical pharmacology assistance; Grace Chow and Stephen Becker for their guidance as project officers; John Carroll of the Gladstone Institutes for providing original versions of the figures; Miguel Bernal and Ximena Barra for their print and film work; Mark Aurigemma for developing communication materials; Malu Robles for her assistance in the
preparation of the manuscript; and Mark Wainberg, Mike Youle, Sandra Lehrman, Jose Pilotto, Neptali Arias, Vivian Levy, Kimberly Page, and Renee Ridzon for inspiration and logistical work.

The authors’ affiliations are listed in the Appendix.

Address reprint requests to Dr. Grant at the J. David Gladstone Institutes, University of California at San Francisco, 1650 Owens St., San Francisco, CA, 94158, or at robert.grant@ucsf.edu.

Other members of the Preexposure Prophylaxis Initiative (iPrEx) study team are listed in the Supplementary Appendix, available at NEJM.org.

The authors’ affiliations are as follows: the Gladstone Institute of Virology and Immunology (R.M.G., V.M., P.G., R.J.H., J.J.M., P.D., J.L.); the University of California, San Francisco (R.M.G., A.Y.L., S.P.B., K.M., F.W., D.V.G.); and the HIV Research Section, San Francisco Department of Public Health (A.Y.L., S.P.B.) — all in San Francisco; Investigaciones Medicas en Salud, Lima (J.R.L., L.V.); Asociación Civil Impacta Salud y Educación, Lima (J.R.L., J.V.G.-C., M.E.R.-C., C.G.); and Asociación Civil Selva Amazónica, Iquitos (M.C.) — all in Peru; the University of Colorado, Denver (P.L.A., L.R.B., J.-H.Z.); Fundación Ecuatoriana Equidad, Guayaquil, Ecuador (O.M.-H., T.F.); Instituto de Pesquisa Clínica Evandro Chagas-Fundação Oswaldo Cruz (V.G.V.); and Projeto Praça Onze, Hospital Escola São Francisco de Assis, Universidade Federal do Rio de Janeiro (M.S.) — both in Rio de Janeiro; Brown University, Providence, RI (K.H.M.); the Fenway Institute, Fenway Health, Boston (K.H.M.); the Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, and Instituto de Investigación en Imunología — both in São Paulo (E.G.K.); Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand (S.C.); Desmond Tutu HIV Centre and Department of Medicine, University of Cape Town, Cape Town, South Africa (L.-G.B.); Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (A.I.M., D.N.B.); Gilead Sciences, Foster City, CA (J.F.R., H.S.J.); DF/Net Research, Seattle (B.P.); Applied Health Research, Brighton, MI (K.R.A.); and the Center for Health, Intervention, and Prevention, University of Connecticut, Storrs (K.R.A.).

References

4 Schechter M, do Lago RF, Mendelsohn AB, Moreira RI, Moulton LH, Harrison LH. Behavioral impact, acceptability, and HIV incidence among homosexual men with access to postexposure chemoprophylaxis for HIV. J Acquir Immune Defic Syndr 2004;35:519-525

| 9 | Van Rompay KKA, McChesney MB, Aguirre NL, Schmidt KA, Bischofberger N, Marthas ML. Two low doses of tenofovir protect newborn macaques against oral simian immunodeficiency virus infection. J Infect Dis 2001;184:429-438 | CrossRef | Web of Science | Medline |

31 Templeton DJ, Millett GA, Grulich AE. Male circumcision to reduce the risk of HIV and sexually transmitted infections among men who have sex with men. Curr Opin Infect Dis 2010;23:45-52

1. Stacey M. Succop, Kathleen M. MacQueen, Francois van Loggerenberg, Nellsile Majola, Quarraisha Abdool Karim, Salim S. Abdool Karim. (2014) Trial participation disclosure and gel use behavior in the CAPRISA 004 tenofovir gel trial. AIDS Care 26:12, 1521-1525

19 Carl A. Kirton. (2014) HIV infection and its implication for nurse leaders. Nursing Management (Springhouse) 45:10, 24-31

evaluation of tenofovir disoproxil fumarate released from an intravaginal ring in pigtailed macaques after 6 months of continuous use. *Journal of Medical Primatology* 43:5, 364-369

22 Norma C. Ware, Emily E. Pisarski, Jessica E. Haberer, Monique A. Wyatt, Elisoda Tumwesigye, Jared M. Baeten, Connie L. Celum, David R. Bangsberg. (2014) Lay Social Resources for Support of Adherence to Antiretroviral Prophylaxis for HIV Prevention Among Serodiscordant Couples in sub-Saharan Africa: A Qualitative Study. *AIDS and Behavior*

41 Douglas Krakower, Norma Ware, Jennifer A. Mitty, Kevin Maloney, Kenneth H. Mayer. (2014) HIV Providers’ Perceived Barriers and Facilitators to Implementing Pre-exposure Prophylaxis in Care Settings: A Qualitative Study. *AIDS and Behavior* 18:9, 1712-1721 CrossRef

42 Helen L. King, Samuel B. Keller, Michael A. Giancola, David A. Rodriguez, Jasmine J. Chau, Jason A. Young, Susan J. Little, Davey M. Smith. (2014) Pre-Exposure Prophylaxis Accessibility Research and Evaluation (PrEPARE Study). *AIDS and Behavior* 18:9, 1722-

Margaret C. Snead, Athena P. Kourtis, Johan H. Melendez, Carolyn M. Black, Christine K. Mauck, Ana Penman-Aguilar, Dorothy M. Chaney, Maria F. Gallo, Denise J. Jamieson, Maurizio Macaluso, Gustavo F. Doncel. (2014) Does tenofovir gel or do other microbicide products affect detection of biomarkers of semen exposure in vitro?. *Contraception* 90:2, 136-141

Wenya Yu, Lu Wang, Na Han, Xiayan Zhang, Tanmay Mahapatra, Sanchita Mahapatra, Giridhar R. Babu, Weiming Tang, Roger Detels, Jinkou Zhao. (2014) Pre-exposure prophylaxis of HIV: A right way to go or a long way to go?. *Artificial Cells, Nanomedicine, and Biototechnology* 1-8

Shayesta Dhalla, Gary Poole. (2014) Effect of race/ethnicity on participation in HIV vaccine trials and comparison to other trials of biomedical prevention. *Human vaccines & immunotherapeutics* 10:7,

Bettina T. Schunter, Wing-Sie Cheng, Megan Kendall, Hein Marais. (2014) Lessons Learned From a Review of Interventions for Adolescent and Young Key Populations in Asia Pacific and Opportunities for Programming. JAIDS Journal of Acquired Immune Deficiency Syndromes 66, S186-S192

against sex workers: burden and effect on HIV. *The Lancet*

88. Martin Holt, Toby Lea, Dean Murphy, Jeanne Ellard, Marsha Rosengarten, Susan Kippax, John De Wit. (2014) Willingness to use HIV pre-exposure prophylaxis has declined among Australian gay and bisexual men. *JAIDS Journal of Acquired Immune Deficiency Syndromes* 1

91. Julia Dickson-Gomez, Jill Owczarzak, Janet St.Lawrence, Cheryl Sitzler, Katherine Quinn, Broderick Pearson, Jeffrey A. Kelly, Yuri A. Amirkhanian. (2014) Beyond the Ball: Implications for HIV Risk and Prevention Among the Constructed Families of African American Men Who Have Sex with Men. *AIDS and Behavior*

<table>
<thead>
<tr>
<th>Page</th>
<th>Authors</th>
<th>Title</th>
<th>Journal/Source</th>
<th>CrossRef</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Jared M Baeten, Renee Heffron</td>
<td>(2014) Pre-exposure prophylaxis to intensify the fight against HIV. The Lancet Infectious Diseases 14:6, 443-445</td>
<td>CrossRef</td>
<td></td>
</tr>
</tbody>
</table>

LaRon E. Nelson, Ja’Nina J. Walker, Steve N. DuBois, Sulaimon Giwa. (2014) Your blues ain't like mine: considering integrative antiracism in HIV prevention research with black men who have sex with men in Canada and the United States. *Nursing Inquiry* n/a-n/a

Yujiang Jia, Debapriya Sengupta, Jenevieve Opoku, Charles Wu, Angeline Griffin, Tiffany West, Rowena Samala, Irshad Shaikh, Gregory Pappas. (2014) Site migration in seeking care services from multiple providers is associated with worse clinical outcomes among HIV-infected individuals in Washington, DC. *AIDS Care* 1-6

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>Pharmacokinetics of a CCR5 inhibitor in rhesus macaques following vaginal, rectal and oral application.</td>
<td>Journal of Antimicrobial Chemotherapy</td>
<td>69:5</td>
<td>1325-1329</td>
<td>10.1093/jac/69.5.1325</td>
</tr>
<tr>
<td>115</td>
<td>Role of Fc-mediated antibody function in protective immunity against HIV-1.</td>
<td>Immunology</td>
<td>142:1</td>
<td>46-57</td>
<td>10.1002/imm.2013000047</td>
</tr>
<tr>
<td>116</td>
<td>Provider Attitudes Toward Oral Preexposure Prophylaxis for HIV Prevention Among High-Risk Men Who Have Sex with Men in Lima, Peru.</td>
<td>AIDS Research and Human Retroviruses</td>
<td>30:5</td>
<td>416-424</td>
<td>10.1097/0001-8542(200905)</td>
</tr>
<tr>
<td>117</td>
<td>Long-chain peer referral to recruit black MSM and black transgender women for an HIV vaccine efficacy trial.</td>
<td>JAIDS Journal of Acquired Immune Deficiency Syndromes</td>
<td>1</td>
<td></td>
<td>10.1002/jaids.31249</td>
</tr>
<tr>
<td>122</td>
<td>Setting the Bar High or Setting Up to Fail? Interpretations and Implications of The EXPLORE Study (HPTN 015).</td>
<td>AIDS and Behavior</td>
<td>18:4</td>
<td>625-633</td>
<td>10.1080/15589644.2014.921417</td>
</tr>
<tr>
<td>123</td>
<td>Moving the Bar to the Right Place: Positioning Interventions in HIV Prevention.</td>
<td>AIDS and Behavior</td>
<td>18:4</td>
<td>634-637</td>
<td>10.1080/15589644.2014.921417</td>
</tr>
</tbody>
</table>

134 Corbin G. Thompson, Alexander Sedykh, Melanie R. Nicol, Eugene Muratov, Denis Fourches, Alexander Tropsha, Angela D.M. Kashuba. (2014) Cheminformatics Analysis to Identify Predictors of Antiviral Drug Penetration into the Female Genital Tract. *AIDS*

Structural Barriers to Accessing HIV Testing and Prevention Services Among Black Men Who Have Sex with Men (BMSM) in the United States. *AIDS and Behavior* CrossRef

147 Corbin Thompson, Alexander Sedykh, Melanie Nicol, Eugene Muratov, Denis Fourches, Alexander Tropsha, Angela Kashuba. (2014) Cheminformatics Analysis to Identify Predictors of Antiviral Drug Penetration into the Female Genital Tract. *AIDS Research and Human Retroviruses* 140210065858006 CrossRef

of Tenofovir in HIV-Infected Women During Labor and Their Infants During the First Week of Life. JAIDS Journal of Acquired Immune Deficiency Syndromes 65:1, 33-41

Caroline Foster, Susan McDonald, Graham Frize, Sarah Ayers, Sarah Fidler. (2014) “Payment by Results”—Financial Incentives and Motivational Interviewing, Adherence Interventions in Young Adults with Perinatally Acquired HIV-1 Infection: A Pilot Program. AIDS Patient Care and STDs 28:1, 28-32

Cynthia Cunha, Raquel De Boni, Maria Regina Guimarães, Carolyn Yanavich, Valdirea Veloso, Ronaldo Moreira, Brenda Hoagland, Beatriz Grinsztejn, Ruth Friedman. (2014) Unprotected sex among men who have sex with men living with HIV in Brazil: a cross-
sectional study in Rio de Janeiro. *BMC Public Health* **14**:1, 379

168 Lisa A. Eaton, Daniel D. Driffin, Harlan Smith, Christopher Conway-Washington, Denise White, Chauncey Cherry. (2014) Psychosocial factors related to willingness to use pre-exposure prophylaxis for HIV prevention among Black men who have sex with men attending a community event. *Sexual Health* **11**:3, 244

173 Marta Boffito, Akil Jackson, Andrew Owen, Stephen Becker. (2013) New Approaches to Antiretroviral Drug Delivery: Challenges and Opportunities Associated with the Use of Long-Acting Injectable Agents. *Drugs*

Fatou Maria Dramé, Sarah Peitzmeier, Magda Lopes, Marième Ndaw, Abdoulaye Sow, Daouda Diouf, Stefan Baral. (2013) Gay men and other men who have sex with men in West Africa: evidence from the field. Culture, Health & Sexuality 15:sup1, 7-21 CrossRef

David A.M.C. van de Vijver, Brooke E. Nichols, Ume L. Abbas, Charles A.B. Boucher, Valentina Cambiano, Jeffrey W. Eaton, Robert Glaubius, Katrina Lythgoe, John Mellors,
Andrew Phillips, Kim C. Sigaloff, Timothy B. Hallett. (2013) Preexposure prophylaxis will have a limited impact on HIV-1 drug resistance in sub-Saharan Africa. *AIDS* 27:18, 2943-2951

Bridget Haire, Christopher Jordens. (2013) Mind the gap: An empirical study of post-trial access in HIV biomedical prevention trials. *Developing World Bioethics* n/a-n/a

Ayyappa Chaturvedula, Michael J. Fossler, Craig W. Hendrix. (2013) Estimation of tenofovir’s population pharmacokinetic parameters without reliable dosing histories and application to tracing dosing history using simulation strategies. *The Journal of Clinical Pharmacology* n/a-n/a

Françoise Barré-Sinoussi, Anna Laura Ross, Jean-François Delfraissy. (2013) Past, present and future: 30 years of HIV research. *Nature Reviews Microbiology* n/a-n/a

Tanuja N. Gengiah, Atika Moosa, Anushka Naidoo, Leila E. Mansoor. (2013) Adherence challenges with drugs for pre-exposure prophylaxis to prevent HIV infection. *International Journal of Clinical Pharmacy* n/a-n/a

232 Hailey J. Gilmore, Albert Liu, Kimberly Ann Koester, K. Rivet Amico, Vanessa McMahan, Pedro Goicochea, Lorena Vargas, David Lubensky, Susan Buchbinder, Robert Grant. (2013) Participant Experiences and Facilitators and Barriers to Pill Use Among Men Who Have Sex with Men in the iPrEx Pre-Exposure Prophylaxis Trial in San Francisco. *AIDS Patient Care and STDs* 27:10, 560-566

234 Mark W. Hull, Julio S.G. Montaner. (2013) HIV treatment as prevention: The key to an AIDS-free generation. *Journal of Food and Drug Analysis*

Vaccines 1:3, 348-366

CrossRef

CrossRef

CrossRef

CrossRef

254 Christina Knussen, Paul Flowers, Lisa M. McDaid. (2013) Factors associated with recency of HIV testing amongst men residing in Scotland who have sex with men. AIDS Care1-7

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

259 Arunrat Tangmunkongvorakul, Suwat Chariyalertsak, K. Rivet Amico, Pongpun Saokhieo, Vorawan Wannalak, Thirayut Sangangamsakun, Pedro Goicochea, Robert Grant. (2013) Facilitators and barriers to medication adherence in an HIV prevention study among men who have sex with men in the iPrEx study in Chiang Mai, Thailand. AIDS Care 25:8, 961-967

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

Katherine B. Rucinski, Nana P. Mensah, Kent A. Sepkowitz, Blayne H. Cutler, M. Monica Sweeney, Julie E. Myers. (2013) Knowledge and Use of Pre-Exposure Prophylaxis Among an Online Sample of Young Men Who Have Sex with Men in New York City. *AIDS and*

CrossRef

CrossRef

CrossRef

Free Full Text

CrossRef

CrossRef

CrossRef

CrossRef

310 Jared M. Baeten, Robert Grant. (2013) Use of Antiretrovirals for HIV Prevention: What Do We Know and What Don’t We Know?. *Current HIV/AIDS Reports* **10**:2, 142-151

CrossRef

CrossRef

CrossRef

313 J. E. Myers, K. A. Sepkowitz. (2013) A Pill for HIV Prevention: Deja Vu All Over Again?. *Clinical Infectious Diseases* **56**:11, 1604-1612

CrossRef

Adoption of Preexposure Prophylaxis. *JAIDS Journal of Acquired Immune Deficiency Syndromes* 63, S95-S101

Panagiotis Vagenas, Kaysia T. Ludford, Pedro Gonzales, Jesus Peinado, Cesar Cabezas, Fernando Gonzales, Javier R. Lama, Jorge Sanchez, Frederick L. Altice. (2013) Being Unaware of Being HIV-Infected is Associated with Alcohol Use Disorders and High-Risk Sexual Behaviors Among Men Who have Sex with Men in Peru. *AIDS and Behavior*

326	Annemarie Shibata, Emily McMullen, Alex Pham, Michael Belshan, Bridget Sanford, You Zhou, Michael Goede, Abhijit A. Date, Christopher J. Destache. (2013) Polymeric Nanoparticles Containing Combination Antiretroviral Drugs for HIV Type 1 Treatment. *AIDS Research and Human Retroviruses* 29:5, 746-754 [CrossRef]
332	Garrett Prestage, Graham Brown, Ian Alan Down, Fengyi Jin, Michael Hurley. (2013) “It’s Hard to Know What is a Risky or not a Risky Decision”: Gay Men’s Beliefs About Risk During Sex. *AIDS and Behavior* 17:4, 1352-1361 [CrossRef]
334	Stefan Baral, Andrew Scheibe, Patrick Sullivan, Gift Trapence, Andrew Lambert, Linda-Gail Bekker, Chris Beyrer. (2013) Assessing Priorities for Combination HIV Prevention Research for Men Who have Sex with Men (MSM) in Africa. *AIDS and Behavior* 17:S1, 60-

J. E. Pace, G. K. Siberry, R. Hazra, B. G. Kapogiannis. (2013) Preexposure Prophylaxis for Adolescents and Young Adults at Risk for HIV Infection: Is an Ounce of Prevention Worth a Pound of Cure?. *Clinical Infectious Diseases* **56**:8, 1149-1155

Acceptability and Motivations for Adherence Among MSM and Transgender Women in New York City. *AIDS Patient Care and STDs* **27**:4, 248-254

349 Erik De Clercq. (2013) The Acyclic Nucleoside Phosphonates (ANPs): Antonín Holý’s Legacy. *Medicinal Research Reviews* n/a-n/a

and meta-analysis. The Lancet Infectious Diseases 13:3, 214-222

Sengeziwe Sibeko, Shokouh Makvandi-Nejad. (2013) From the Laboratory to Clinical Trials and Back Again: Lessons Learned from HIV Prevention Trials. American Journal of Reproductive Immunology 69, 106-115

Barbara S. Mensch, Barbara A. Friedland, Sharon A. Abbott, Lauren L. Katzen, Waimar Tun, Christine A. Kelly, Avina Sama, Aylur K. Srikrishnan, Suniti Solomon. (2013) Characteristics of Female Sex Workers in Southern India Willing and Unwilling to Participate in a Placebo Gel Trial. AIDS and Behavior 17:2, 585-597

Rena Greifinger, Michelle Batchelor, Cynthia Fair. (2013) Improving Engagement and Retention in Adult Care Settings for Lesbian, Gay, Bisexual, Transgender and Questioning (LGBTQ) Youth Living with HIV: Recommendations for Health Care Providers. *Journal of Gay & Lesbian Mental Health* 17:1, 80-95

403 Stephen J O'Brien, Sher L Hendrickson. (2013) Host genomic influences on HIV/AIDS. Genome Biology 14:1, 201

10/27/2014

426 Nina Derby, Thomas Zydowsky, Melissa Robbiani. (2013) In search of the optimal delivery method for anti-HIV microbicides: are intravaginal rings the way forward?. *Expert Review of Anti-infective Therapy* 11:1, 5-8

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

435 Edith Jasny, Suzanne Geer, Ines Frank, Panagiotis Vagenas, Meropi Aravantinou, Andres M. Salazar, Jeffrey D. Lifson, Michael Piatak, Agegnehu Gettie, James L. Blanchard,

Peter A. Anton, Ross D. Cranston, Angela Kashuba, Craig W. Hendrix, Namandjé N. Bumpus, Nicola Richardson-Harman, Julie Elliott, Laura Janocko, Elena Khanukhova,

CrossRef

CrossRef

reservoirs by host HLA: bridging the gap between vaccine and cure. *Current Opinion in Virology* 2:5, 599-605

Ranajit Pal, Lindsey Galmin, Lara E. Pereira, Bin Li, Jining Zhang, Daniel Li, Jesse Francis, Janet M. McNicholl, Deborah E. Weiss, James M. Smith. (2012) Virological and molecular characterization of a simian human immunodeficiency virus (SHIV) encoding the envelope and reverse transcriptase genes from HIV-1. *Virology* 432:1, 173-183

Connie J. Sexton, Elizabeth C. Costenbader, Dang Thi Nhat Vinh, Pai Lien Chen, Tran Vu
Hoang, Nguyen Thi Hoang Lan, Paul Feldblum, Andrea Kim, Le Truong Giang. (2012) Correlation of Prospective and Cross-Sectional Measures of HIV Type 1 Incidence in a Higher-Risk Cohort in Ho Chi Minh City, Vietnam. AIDS Research and Human Retroviruses 28:8, 866-873

Retroviruses

| 529 | (2012) Documento de consenso de Gesida/Plan Nacional sobre el Sida respecto al tratamiento antirretroviral en adultos infectados por el virus de la inmunodeficiencia humana (actualización enero de 2012). *Enfermedades Infecciosas y Microbiología Clínica* **30**:6, e1-e89 CrossRef |
| 532 | Salim S Abdool Karim, Quarraisha Abdool Karim. (2012) Antiretroviral prophylaxis for HIV...
prevention reaches a key milestone. *The Lancet* **379**:9831, 2047-2048

Jeffrey H. Herbst, Marlene Glassman, James W. Carey, Thomas M. Painter, Deborah J. Gelaude, Amy M. Fasula, Jerris L. Raiford, Arin E. Freeman, Camilla Harshbarger, Abigail

Angela Kelly, Martha Kupul, Lisa Fitzgerald, Herick Aeno, James Neo, Richard Naketrumb, Peter Siba, John M Kaldor, Andrew Vallyey, . (2012) "Now we are in a different time; various bad diseases have come." understanding men's acceptability of male circumcision for HIV prevention in a moderate prevalence setting. BMC Public Health 12:1, 67

Mary Jo Hoyt, Deborah S. Storm, Erika Aaron, Jean Anderson. (2012) Preconception and Contraceptive Care for Women Living with HIV. *Infectious Diseases in Obstetrics and Gynecology* 2012, 1-14

Roger Detels, Dean L. Winslow. (2011) Treatment as Prevention. *AIDS* 1

Jie Yang, Lin Li, Suiyi Tan, Hong Jin, Jiayin Qiu, Qinchao Mao, Runming Li, Chenglai Xia, Zhi-Hong Jiang, Shibo Jiang, Shuwen Liu. (2011) A natural theaflavins preparation inhibits HIV-1 infection by targeting the entry step: Potential applications for preventing HIV-1 infection. *Fitoterapia*
603	Thomas C. Quinn. (2011) The 30-Year War on AIDS: Have We Reached the Tipping Point?. *Sexually Transmitted Diseases* 38:12, 1089-1093	CrossRef
613	Nicolas Lorente, Lionel Fugon, Maria Patrizia Carrieri, Christian Andreo, Jean-Marie Le Gall, Emmanuel Cook, Jean-Pierre Aboulker, Catherine Capitant, Jean-Michel Molina, Bruno Spire. (2011) Acceptability of an “on-demand” pre-exposure HIV prophylaxis trial among men who have sex with men living in France. *AIDS Care*1-10	CrossRef
614	José das Neves, Johan Michiels, Kevin K. Ariën, Guido Vanham, Mansoor Amiji, Maria Fernanda Bahia, Bruno Sarmento. (2011) Polymeric Nanoparticles Affect the Intracellular Delivery, Antiretroviral Activity and Cytotoxicity of the Microbicide Drug Candidate	
Dapivirine. *Pharmaceutical Research*

Deficiency Syndromes 58:2, e51-e52

CrossRef

CrossRef

627 Harkaitz Azkune, Maialen Ibaguren, Xabier Camino, José Antonio Iribarren. (2011) Prevención de la transmisión del VIH (vertical, ocupacional y no ocupacional). Enfermedades Infecciosas y Microbiología Clínica 29:8, 615-625

CrossRef

628 José Vicente Fernández-Montero, Vicente Soriano. (2011) Profilaxis preexposición en la prevención de la infección por virus de la inmunodeficiencia humana. Medicina Clínica 137:10, 446-448

CrossRef

629 Rewa Kohli, Sharon Tsui, Sanjay Mehendale, Elizabeth Tolley. (2011) Indian married men's interest in microbicide use. AIDS Care 23:10, 1344-1349

CrossRef

CrossRef

CrossRef

632 Leolin Katsidzira, James G. Hakim. (2011) HIV prevention in southern Africa: why we must reassess our strategies?. Tropical Medicine & International Health 16:9, 1120-1130

CrossRef

CrossRef

CrossRef

for Adequate Transitional Care for HIV-Infected Prisoners: Five Essential Components. *Clinical Infectious Diseases* **53**:5, 469-479

Free Full Text

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

CrossRef

and HPV transmission. *The Lancet Infectious Diseases* **11**:8, 581-582

672 Jessica E. Price, Willard Cates. (2011) Sex Worker Studies: The Science, Semantics, and
Politics of Targeting Our HIV Prevention Response. *Sexually Transmitted Diseases* **38**:5, 395-397

Rebecca F Baggaley, Kimberly A Powers, Marie-Claude Boily. (2011) What do mathematical models tell us about the emergence and spread of drug-resistant HIV?. *Current Opinion in HIV and AIDS* **6**:2, 131-140

Free Full Text